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This talk has two parts

(1) Near-term prospects for quantum computing. 

(2) Opportunities in quantum simulation of 

quantum field theory. 

Exascale digital computers will advance our knowledge of QCD, 

but some challenges will remain, especially concerning real-time 

evolution and properties of nuclear matter and quark-gluon 

plasma at nonzero temperature and chemical potential. 

Digital computers may never be able to address these (and other) 

problems; quantum computers will solve them eventually, though 

I’m not sure when. The physics payoff may still be far away, but 

today’s research can hasten the arrival of a new era in which 

quantum simulation fuels progress in fundamental physics. 
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A quantum computer can simulate efficiently any 

physical process that occurs in Nature.

(Maybe. We don’t actually know for sure.)

particle collision entangled electronsmolecular chemistry

black hole early universesuperconductor



Two fundamental ideas

(1) Quantum complexity

Why we think quantum computing is powerful.

(2) Quantum error correction

Why we think quantum computing is scalable.



A complete description of a typical quantum state of just 300 qubits 

requires more bits than the number of atoms in the visible universe. 



Why we think quantum computing is powerful

We know examples of problems that can be solved efficiently by a 
quantum computer, where we believe the problems are hard for classical 
computers. Factoring is the best known example. No efficient classical 
algorithm for factoring is known, and not for lack of trying. Factoring 
numbers which are thousands of bits long is out of reach classically, yet 
eventually will be feasible quantumly.

Consider the probability distribution of measurement outcomes for n-qubits 
in a quantum computer. Complexity theory arguments, based on plausible 
assumptions, indicate that no efficient classical algorithm can efficiently 
sample from this distribution. 

We don’t know how to simulate a quantum computer efficiently using a 
digital (“classical”) computer. It is not for lack of trying. The cost of the best 
simulation algorithm rises exponentially with the number of qubits. 

The power of quantum computing is limited. For example, we don’t believe 
that quantum computers can efficiently solve worst-case instances of NP-
hard optimization problems (e.g., the traveling salesman problem). 



Quantum hardware: state of the art

IBM Quantum Experience in the cloud: now 16 qubits (superconducting circuit). 

50-qubit device “built and measured.”

Google 22-qubit device (superconducting circuit), 72 qubits built. 

ionQ: 32-qubit processor planned (trapped ions), with all-to-all connectivity.

Rigetti: 128-qubit processor planned (superconducting circuit).

Harvard 51-qubit quantum simulator (Rydberg atoms in optical tweezers). 

Dynamical phase transition in Ising-like systems; puzzles in defect (domain wall) 

density.

UMd 53-qubit quantum simulator (trapped ions). Dynamical phase transition in 

Ising-like systems; high efficiency single-shot readout of many-body correlators. 

And many other interesting platforms … spin qubits, defects in diamond (and 

other materials), photonic systems, …

There are other important metrics besides number of qubits; in particular, the 

two-qubit gate error rate (currently > 10-3) determines how large a quantum 

circuit can be executed with reasonable signal-to-noise. 



Quantum computing in the NISQ Era

The (noisy) 50-100 qubit quantum computer is coming soon.

(NISQ = noisy intermediate-scale quantum.)

NISQ devices cannot be simulated by brute force using the most 

powerful currently existing supercomputers. 

Noise limits the computational power of NISQ-era technology.

NISQ will be an interesting tool for exploring physics. It might also 

have useful applications. But we’re not sure about that.

NISQ will not change the world by itself. Rather it is a step toward 

more powerful quantum technologies of the future. 

Potentially transformative scalable quantum computers may still be 

decades away. We’re not sure how long it will take.



Qubit “quality”

The number of qubits is an important metric, but it is not the only thing that matters. 

The quality of the qubits, and of the “quantum gates” that process the qubits, is 

also very important. All quantum gates today are noisy, but some are better than 

others. Qubit measurements are also noisy.

For today’s best hardware (superconducting circuits or trapped ions), the 

probability of error per (two-qubit) gate is about 10-3, and the probability of error per 

measurement is about 10-2 (or better for trapped ions). We don’t yet know whether 

systems with many qubits will perform that well. 

Naively, we cannot  do many more than 1000 gates (and perhaps not even that 

many) without being overwhelmed by the noise. Actually, that may be too naïve, 

but anyway the noise limits the computational power of NISQ technology.

Eventually we’ll do much better, either by improving (logical) gate accuracy using 

quantum error correction (at a hefty overhead cost) or building much more accurate 

physical gates, or both. But that probably won’t happen very soon. 

Other important features: The time needed to execute a gate (or a measurement). 

E.g., the two-qubit gate time is about 40 ns for superconducting qubits, 100 µs for 

trapped ions, a significant difference. Also qubit connectivity, fabrication yield, …



Quantum Speedups?

When will quantum computers solve important problems that are 

beyond the reach of the most powerful classical supercomputers?

We should compare with post-exascale classical hardware, e.g. 10 

years from now, or more (> 1018 FLOPS).

We should compare with the best classical algorithms for the same 

tasks. 

Note that, for problems outside NP (e.g typical quantum simulation 

tasks), validating the performance of the quantum computer may 

be difficult. 

Even if classical supercomputers can compete, the quantum 

computer might have advantages, e.g. lower cost and/or lower 

power consumption. 



Quantum Supremacy!

???



We don’t expect a quantum computer to solve worst case instances of NP-hard 

problems, but it might find better approximate solutions, or find them faster. 

Combine quantum evaluation of a cost function with a classical feedback 

loop for seeking a quantum state with a lower value. 

Quantum approximate optimization algorithm (QAOA). 

In effect, seek low-energy states of a classical spin glass.

Variational quantum eigensolvers (VQE). 

Seek low energy states of  a quantum many-body system with a local Hamiltonian.

Classical optimization algorithms (for both classical and quantum problems) are 

sophisticated and well-honed after decades of hard work. Will NISQ be able to do 

better? We can try it and see how well it works.

Hybrid quantum/classical optimizers

Quantum 

Processor

Classical 

Optimizer

measure cost function

adjust quantum circuit



Quantum machine learning?

(Classical) deep learning, e.g. restricted Boltzmann machines with multiple hidden layers 

between input and output. Millions of coupling parameters, optimized on a training set to 

achieve the  proper relation between input and output. 

Deep learning may be either unsupervised (unlabeled training set), or supervised (e.g. 

learning to  identify photos). 

High-dimensional classical data can be encoded very succinctly in a quantum state. In 

principle log N qubits suffice to represent a N-dimensional vector. Such “quantum Random 

Access Memory” (= QRAM) might have advantages for deep learning applications.

However, quantum deep learning is hampered by input/output bottlenecks.

Perhaps a quantum deep learning network can be trained more efficiently, e.g. using a 

smaller training set. We don’t know. We’ll have to try it to see how well it works. 

Might be achieved by a (highly controllable) quantum annealer, or other custom quantum 

device unsuited for general purpose quantum computing. How robust to noise?

Perhaps more natural to consider quantum inputs / outputs; e.g. better ways to 

characterize or control quantum systems. Quantum networks might have advantages for 

learning about quantum correlations, rather than classical ones. 

Classical deep learning has many applications to quantum science and technology.



Quantum annealing

The D-Wave machine is a (very noisy) 2000-qubit quantum annealer (QA), which solves 

optimization problems. It might be useful. But we have no convincing theoretical 

argument that QAs are useful, nor have QA speedups been demonstrated experimentally. 

QA is a noisy version of adiabatic quantum computing (AQC), and we believe AQC is 

powerful. Any problem that can be solved efficiently by noiseless quantum computers can 

also be solved efficiently by noiseless AQC, using a “circuit-to-Hamiltonian map.”

But in contrast to the quantum circuit model, we don’t know whether noisy AQC is 

scalable. Furthermore,  the circuit-to-Hamiltonian map has high overhead: Many more 

qubits are needed by the (noiseless) AQC algorithm than by the corresponding quantum 

circuit algorithm which solves the same problem. 

Theorists are more hopeful that a QA can achieve speedups if the Hamiltonian has a “sign 

problem” (is “non-stoquastic”). Present day QAs are stoquastic, but non-stoquastic

versions are coming soon. 

Assessing the performance of QA may already be beyond the reach of classical simulation, 

and theoretical analysis has not achieved much progress. Further experimentation should 

clarify whether QAs actually achieve speedups relative to the best  classical algorithms. 

QAs can also be used for solving quantum simulation problems rather than classical 

optimization problems (D-Wave, unpublished).



The steep climb to scalability

NISQ-era quantum devices will not be protected by quantum error correction. 

Noise will limit the scale of computations that can be executed accurately.

Quantum error correction (QEC) will be essential for solving some hard 

problems. But QEC carries a high overhead cost in number of qubits & gates.

This cost depends on both the hardware quality and algorithm complexity. 

With today’s hardware, solving (say) useful chemistry problems may require 

hundreds to thousands of physical qubits for each protected logical qubit. 

To reach scalability, we must cross the daunting “quantum chasm” from 

hundreds to millions of physical qubits. This may take a while. 

Advances in qubit technology, systems engineering, algorithm design, and 

theory can hasten the arrival of the fully fault-tolerant quantum computer. 



Quantum simulation

We’re confident strongly correlated (highly entangled) materials and large 

molecules are hard to simulate classically (because we have tried hard and have 

not succeeded). 

Quantum computers will be able to do such simulations, though we may need to 

wait for scalable fault tolerance, and we don’t know how long that will take. 

Potential (long-term) applications include pharmaceuticals, solar power 

collection, efficient power transmission, catalysts for nitrogen fixation, carbon 

capture, etc. These are not likely to be fully realized in the NISQ era.

Classical computers are especially bad at simulating quantum dynamics ---

predicting how highly entangled quantum states change with time. Quantum 

computers will have a big advantage in this arena. Physicists hope for 

noteworthy advances in quantum dynamics during the NISQ era. 

For example: Classical chaos theory advanced rapidly with onset of numerical 

simulation of classical dynamical systems in the 1960s and 1970s. Quantum 

simulation experiments may advance the theory of quantum chaos. Simulations 

with ~ 100 qubits could be revealing, if not too noisy.



Digital vs. Analog quantum simulation

An analog quantum simulator is a quantum system of many qubits whose 

dynamics resembles the dynamics of a model system we wish to study. A digital 

quantum simulator is a gate-based universal quantum computer, which can be 

used to simulate any physical system of interest when suitably programmed.

Analog quantum simulation has been an active research area for 15 years or 

more; digital quantum simulation is just getting started now.

Analog platforms include: ultracold (neutral) atoms and molecules, trapped 

ions, superconducting circuits, etc.  These same platforms can be used for 

circuit-based computation as well.

Although they are becoming more sophisticated and controllable, analog 

simulators are limited by imperfect control. They are best suited for studying 

“universal” properties of quantum systems which are hard to access in classical 

simulations, yet sufficiently robust to be accessible using noisy quantum 

systems.

Eventually, digital (circuit-based) quantum simulators will surpass analog 

quantum simulators for studies of quantum dynamics, but perhaps not until 

fault tolerance is feasible. 



Quantum simulation of quantum field theories. Why?

QFT encompasses all fundamental interactions, possibly excluding 

gravity. 

Can quantum computers efficiently simulate any process that 

occurs in Nature? (Quantum Church-Turing thesis.)

YES and NO are both exciting answers!

Event generators for QCD, etc.

Simulations of nuclear matter, etc. 

Exploration of other strongly coupled theories. 

Stepping stone to quantum gravity.

Characterizing computational complexity of quantum states. 

New insights!

Quantum computing “solves the sign problem”!



Good News / Bad News

Quantum computers simulate quantum systems in real time, not 

imaginary time.

That’s a shame, because imaginary time evolution (in some cases) is an 

efficient way to prepare ground states and thermal states.

But it’s okay, because Nature evolves in real time, too. 

And simulation of real time evolution for highly entangled quantum 

many-body systems (including quantum field theories) is presumed to be 

hard classically.

Applications include real-time dynamics in strongly correlated quantum 

many-body systems, quantum chemistry, strongly-coupled relativistic 

quantum field theory, QCD, nuclear physics, …

We work with the Hamiltonian (not the action), so Lorentz covariance is 

not manifest. We have to pick an inertial frame, but can obtain frame-

independent results (if we’re careful). 



What problem does the algorithm solve?

Scattering problem: given initial (incoming) state, sample accurately from 

the distribution of final (outgoing) states. 

Vacuum-to-vacuum probability in the presence of spacetime-dependent 

sources coupled to local observables. 

Other S-matrix elements, in cases where particles can be “dressed” 

adiabatically.

Real-time correlation functions, e.g., for insertions of unitary operators.

Correlation functions and bulk observables at nonzero temperature and 

chemical potential. 

To probe, e.g., transport properties, formulate a simulation that models 

an actual experiment. 

For quantum simulation, no “sign problem” prevents us from performing 

these tasks efficiently. 



Prototypical quantum simulation task

(1) State preparation. E.g., incoming scattering state.

(2) Hamiltonian evolution. E.g. Trotter approximation.

(3) Measure an observable. E.g., a simulated detector.

Goal: sample accurately from probability distribution of outcomes. 

Determine how computational resources scale with: error, system size, particle 

number, total energy of process, energy gap, …

Resources include: number of qubits, number of gates, …

Hope for polynomial scaling! Or even better: polylog scaling. 

Need an efficient preparation of initial state.

Approximating a continuous system incurs discretization cost (smaller lattice 

spacing improves accuracy).

What should we simulate, and what do we stand to learn?



Preparing the ground (or thermal) state of a local Hamiltonian

Can be NP-hard even for a classical spin glass.

And even harder (QMA-hard) for some quantum systems, even in 1D. 

But if the state/process exists in Nature, we can hope to simulate it 

(Quantum Church-Turing thesis).

Same goes for Gibbs states (finite temperature and chemical potential) and 

states far from equilibrium. 

Where did the observed state of our universe come from? That’s a question 

about cosmology …

Prototypical ground-state preparation: prepare ground state for an easy 

case (e.g., free theory or strong-coupling limit), then adiabatically change 

the Hamiltonian. Alternatively, we might find a tensor-network 

approximation via a classical variational algorithm, which can then be 

compiled as a quantum circuit.

For thermal states, there are quantum Gibbs sampling algorithms. Or 

simulate a thermal bath. Or follow time evolution until equilibration. 



Sources of error?

Nonzero lattice spacing a. 

Finite spatial volume V.

Discretized fields and conjugate momenta.

E.g., nonzero Trotter step size for simulation of time evolution.

(Diabatic) errors during (adiabatic) state preparation.

These sources of error determine how resources scale with 

accuracy for the case of an ideal (noiseless) quantum circuit. We 

also need to worry about noise in (logical) gates. 



Where are we now?

Resource scaling (number of qubits and gates) for scattering 

simulations in scalar and Yukawa theories.

BQP hardness of weakly-coupled 1D scalar theory (with multiple 

scattering).

Classical tensor-network simulation of massive 1D QED.

Static and dynamic studies of strings and string breaking.

Few-site quantum simulations of 1D QED with trapped ions and 

superconducting circuits. 

Proposals for analog simulation using ultracold atoms.

In progress: Classical and quantum simulations of nonabelian gauge 

symmetry, higher dimensions. 



Quantum field theory in one spatial dimension:

When can it be simulated classically?

For a theory with a mass gap, low energy states are not highly entangled. These 

states admit a succinct classical description as matrix-product states (MPS) with 

a relatively low bond dimension. 

After a quench, a slightly entangled state becomes more entangled as it evolves. 

The bond dimension needed in an MPS description grows, and classical 

simulation may become infeasible if the energy density is nonzero.

What about scattering states? At relatively low energy, only a few particles can 

be created in a collision; the entanglement remains small, and a time-dependent 

MPS (TEBD) classical computation may provide an accurate description, even at 

strong coupling (where Feynman diagram perturbation theory fails).

At high energy, many particles, and much entanglement, can be created; classical 

simulation may become intractable, but quantum simulation is still efficient.

Even for non-relativistic particles and at weak coupling, multiple scattering 

events can build up enough entanglement for classical simulation to be hard (the 

problem becomes “BQP-complete”).



Challenges and Opportunities in quantum simulation

Improving resource costs, greater rigor.

Better regulators: e.g., smearing, improved lattice Hamiltonian, 

tensor network methods, … Alternatives to lattice?

Gauge fields, QCD, standard model, nuclear matter.

Topological defects, massless particles, chiral fermions, SUSY.

Conformal field theory, holography, chaos.

Alternative paradigms, e.g. conformal bootstrap.

Simulations with near-term quantum devices? Hybrid quantum-

classical methods. Defining reachable physics goals. 

Fresh approaches to noise resilience in quantum simulation.

Collaboration of quantumists and field theorists will be needed to 

achieve progress!



Additional

Slides



Quantum speedups in the NISQ era and beyond

Can noisy intermediate-scale quantum computing (NISQ) surpass exascale classical 

hardware running the best classical algorithms?

Near-term quantum advantage for useful applications is possible, but not guaranteed. 

Hybrid quantum/classical algorithms (like QAOA and VQE) can be tested.

Near-term algorithms should be designed with noise resilience in mind. 

Quantum dynamics of highly entangled systems is especially hard to simulate, and is 

therefore an especially promising arena for quantum advantage. 

Experimentation with quantum testbeds may hasten progress and inspire new algorithms.

NISQ will not change the world by itself. Realistically, the goal for near-term quantum 

platforms should be to pave the way for bigger payoffs using future devices. 

Lower quantum gate error rates will lower the overhead cost of quantum error correction, 

and also extend the reach of quantum algorithms which do not use error correction.

Truly transformative quantum computing technology may need to be fault tolerant, and so 

may still be far off. But we don’t know for sure how long it will take. Progress toward fault-

tolerant QC must continue to be a high priority for quantum technologists.



How quantum testbeds might help

Peter Shor: “You don’t need them [testbeds] to be big enough to solve useful 

problems, just big enough to tell whether you can solve useful problems.”

Classical examples:

Simplex method for linear programming: experiments showed it works well in 

practice before theorists could explain why.

Metropolis algorithm: experiments showed it’s useful for solving statistical 

physics problems before theory established criteria for rapid convergence.

Deep learning. Mostly tinkering so far, without much theory input.

Possible quantum examples:

Quantum annealers, approximate optimizers, variational eigensolvers, … playing 

around may give us new ideas.

But in the NISQ era, imperfect gates will place severe limits on circuit size. In the 

long run, quantum error correction will be needed for scalability. In the near 

term, better gates might help a lot!

What can we do with, say, < 100 qubits, depth < 100? We need a dialog between 

quantum algorithm experts and application users. 



Quantum linear algebra

QRAM: an N-component vector b can be encoded in a quantum state |b  of log N 

qubits.

Given a classical N X N input matrix A, which is sparse and well-conditioned, and 

the quantum input state |b  , the HHL (Harrow, Hassidim, Lloyd 2008) algorithm 

outputs the quantum state |y = |A-1 b, with a small error, in time O(log N). The 

quantum speedup is exponential in N.

Input vector |b and output vector |y = |A-1 b are quantum! We can sample 

from measurements of |y .

If the input b is classical, we need to load |b into QRAM in polylog time to get the 

exponential speedup (which might not be possible). Alternatively the input b may 

be computed rather than entered from a database.

HHL is BQP-complete: It solves a (classically) hard problem unless BQP=BPP.

Example: Solving (monochromatic) Maxwell’s equations in a complex 3D 

geometry; e.g., for antenna design (Clader et al. 2013). Discretization and 

preconditioner  needed. How else can HHL be applied?

HHL is not likely to be feasible in the NISQ era. 



Speeding up semidefinite programs (SDPs)

Given N X N Hermitian matrices C, {A1, … ,Am} and real numbers {b1, …, bm}, 

maximize tr(CX) subject to tr (Ai X) ≤ bi, X ≥ 0.

Many applications, classically solvable in poly(m,N ) time.

Suffices to prepare (and sample from) Gibbs state for H = linear comb. of input 

matrices. Quantum time polylog(N) if Gibbs state can be prepared efficiently 

(Brandão & Svore 2016). Output is a quantum state ρ ≅ X.

When can the Gibbs state be prepared efficiently?

-- H thermalizes efficiently.

-- Input matrices are low rank (Brandão et al. 2017).

Can be viewed as a version of quantum annealing (QA) where Hamiltonian is 

quantum instead of classical, and where the algorithm is potentially robust with 

respect to small nonzero temperature.

The corresponding Gibbs state can be prepared efficiently only for SDPs with special 

properties. What are the applications of these SDPs?



Noise-resilient quantum circuits

For near-term applications, noise-resilience is a key consideration in quantum 

circuit design (Kim 2017).

For a generic circuit with G gates, a single faulty gate might cause the circuit to 

fail. If the probability of error per gate is not much larger than 1/G, we have a 

reasonable chance of getting the right answer. 

But, depending on the nature of the algorithm and the circuit that implements it, 

we might be able to tolerate a much larger gate error rate. 

For some physical simulation problems, a constant probability of error per 

measured qubit can be tolerated, and the number of circuit locations where a 

fault can cause an error in a particular qubit is relatively small. This could happen 

because the circuit has low depth, or because an error occurring at an earlier 

time decays away by a later time. 

Circuits with good noise-resilience (based on tensor network constructions like 

MERA) are among those that might be useful for solving quantum optimization 

problems using variational quantum eigensolvers (VQE), improving the prospects 

for outperforming classical methods during the NISQ era (Kim and Swingle 2017). 



Best classical algorithms: cautionary tales

Boson sampling: From 30 photons and 500 modes to 50 photons and 2500 modes (Neville et 

al. 2017).

Random circuits: Simulating 49 qubits with TB rather then PB memory (IBM 2017) --- trading 

depth and space.

Best approximation ratio for Max E3LIN2 (with bounded occurence D) achieved by QAOA at 

level p=1 (Farhi et al. 2014), later surpassed by classical all-star team.

D-Wave evidence for constant factor speedup weakens when quantum annealer is compared 

with better classical algorithms. 

Randomized classical matrix inversion can compete with quantum in some parameter regimes 

(Le Gall).

Tensor network methods for quantum many-body physics and chemistry keep improving (MPS, 

PEPS, MERA, tensor RG). 

Are physically relevant quantum problems really classically hard, even if BQP ≠ BPP?

Dynamics seems promising, but MBL (many-body localization) may be classically easy, and ETH 

(eigenstate thermalization hypothesis = strong quantum chaos) may be physically boring 

(wisecrack by Frank Verstraete). 



How to regulate?

Momentum space is natural for diagonalizing free field theory 

Hamiltonian, and formulating perturbation theory.

Renormalization group can also be formulated in momentum 

space. 

But real space is better suited for simulation, because the 

Hamiltonian is spatially local. 

We define fields on lattice sites, with lattice spacing a, a source of 

error. “Bare” parameters. Smaller lattice spacing means better 

accuracy, but more qubits to simulate a specified spatial volume. 

Fields and their conjugate momenta are unbounded operators. We 

express them in terms of a bounded number of qubits, determined 

by energy of the simulated process. 

Doing better: RG-improved lattice Hamiltonians? Tensor network 

constructions, e.g., c-MPS, c-MERA, wavelets?



What to simulate?

For example, a self-coupled scalar field in D=2, 3, 4. 

φ φ λ φ−  
Π + ∇ + 


= +

 1 2 2 2 2 4

0 0

1 1 1 1
( )

2 2 2 4!

D
H d x m

Without the φ 4 term, a Gaussian theory which is easy to simulate 

classically (noninteracting particles). 

With this interaction term, particles can scatter. The dimensionless 

coupling parameter is λ/m4-D. Classical simulations are hard when 

the coupling is strong. 

Hardness persists even at weak coupling, if we want high precision, 

or if particles interact long enough to become highly entangled.

Summing perturbation theory is infeasible, and misses 

nonperturbative effects. 

We assume theory has a mass gap.



A simulation protocol

Input: a list of incoming particle momenta.

Output: a list of (perhaps many) outgoing particle momenta.

Procedure:

(1) Prepare free field vacuum (λ0 = 0).

(2) Prepare free field wavepackets (narrow in momentum).

(3) Adiabatically turn on the (bare) coupling.

(4) Evolve for time t with Hamiltonian H.

(5) Adiabatically turn off interaction.

(6) Measure field modes. 

Assume no phase transition blocks adiabatic state preparation.

Alternative: create particles with spacetime dependent classical 

sources (better if there are bound states). Simulate detector POVM. 

Lorentz invariance brutally broken in lattice theory, recovered by 

tuning bare H. (Ugh.) Also tune for achieve ma << 1.



Example: φ 4 theory in D=3 spacetime dimensions

Error ε scales with lattice spacing a as ε =O(a2).

Number of qubits Ω needed to simulate physical volume V is

Ω = V/a2 = O(1/ε). 

Gaussian state preparation (matrix arithmetic) uses Ω2.273 gates. 

(though a customized algorithm exploiting translation invariance 

does better). 

Scaling with energy E: number of gates = O(E6). 

Factor E from Trotter error, E2 from lattice spacing a ~ 1/E, E3 from 

diabatic error. 

Dominant diabatic error comes from splitting of 1 → 3 particles, for 

which energy gap ~ m2/E.

Thousands of logical qubits for 2 → 4 scattering with 1% error at E/ 

m = O(1). Yikes!


